´╗┐

Wranglers
GP: 22 | W: 5 | L: 16 | OTL: 1 | P: 11
GF: 63 | GA: 106 | PP%: 14.29% | PK%: 72.50%
GM : Tommy Barr | Morale : 50 | Team Overall : 64
Next Games #351 vs Stars
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Wranglers
5-16-1, 11pts
3
FINAL
5 Eagles
6-14-1, 13pts
Team Stats
W1StreakW2
3-5-0Home Record4-5-1
2-11-1Away Record2-9-0
3-7-0Last 10 Games4-5-1
2.862.95
4.824.10
14.29%22.50%
72.50%75.68%
Silver Knights
15-5-2, 32pts
4
FINAL
5 Wranglers
5-16-1, 11pts
Team Stats
OTL1StreakW1
9-1-1Home Record3-5-0
6-4-1Away Record2-11-1
7-2-1Last 10 Games3-7-0
4.452.86
3.054.82
23.68%14.29%
60.98%72.50%
Stars
5-11-3, 13pts
2023-11-30
Wranglers
5-16-1, 11pts
Team Stats
OTL1StreakW1
4-5-13-5-0
1-6-22-11-1
4-4-2Last 10 Games3-7-0
2.792.86
4.164.82
6.90%14.29%
66.67%72.50%
Canucks
18-3-1, 37pts
2023-12-02
Wranglers
5-16-1, 11pts
Team Stats
L1StreakW1
7-1-13-5-0
11-2-02-11-1
9-1-0Last 10 Games3-7-0
4.952.86
2.684.82
33.33%14.29%
88.52%72.50%
Wild
17-2-0, 34pts
2023-12-05
Wranglers
5-16-1, 11pts
Team Stats
W7StreakW1
9-0-03-5-0
8-2-02-11-1
9-1-0Last 10 Games3-7-0
6.052.86
2.894.82
44.83%14.29%
85.71%72.50%
Egor AfanasyevGoals
Egor Afanasyev
11
Egor AfanasyevAssists
Egor Afanasyev
15
Egor AfanasyevPoints
Egor Afanasyev
26
Matt KierstedPlus/Minus
Matt Kiersted
-1
Mack GuzdaWins
Mack Guzda
3
Jiri PateraSave Percentage
Jiri Patera
0.875

Team Stats

63
2.86 GFG
Shots For
857
38.95 Avg

14.3%
6 GF

38.2%
Goals Against
106
4.82 GAA
Shots Against
783
35.59 Avg

72.5%
11 GA

34.8%


General ManagerTommy Barr
Pacific Division
Western Conference




Arena Capacity5,000
Attendance5,000
5,000




21
19
40 / 55
Prospects23


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Egor Afanasyev (R)0XX100.00755198718147555645646955626262050710222789,167$
2Logan Brown0XX100.00715296698245555755686955636363050710253787,500$
3Matthew Phillips0X100.00526384595776884965626655572540050660253787,500$
4Emil Heineman (R)0X100.00533683577858454636576653562540050640212897,500$
5Egor Sokolov (R)0X100.00546281575675874636626546552540050640231925,000$
6Adam Gaudette0XX100.00546381565576884565596548552540050630262902,500$
7Hugh McGing (R)0XX100.00536481545479914136596443532540050620243869,500$
8Spencer Smallman0X100.00536382535376884036586444522540050610263777,750$
9Henry Bowlby (R)0X100.00536282535375874065586443522540050600262776,364$
10Josh Doan (R)0X100.00513785536258454036586443522540050590211750,000$
11Mitchell Balmas (R)0X100.00523583535958453965566442522540050580253750,000$
12Collin Adams (R)0X100.00515385515458613736566338502540050570251925,000$
13Kevin Gravel0X100.00715197698153555940656855646464050720311762,500$
14Matt Kiersted (R)0X100.00715196698042556240686955656565050720253878,750$
15Emil Andrae (R)0X100.00533582557358454336606438532540050610211750,000$
16Alex Vlasic (R)0X100.00525883535366763936596343512540050590222916,667$
17Colton Poolman0X100.00526184525273843736576342502540050590271787,500$
18Michael Vukojevic (R)0X100.00525783515263733736566337502540050570222925,000$
Scratches
TEAM AVERAGE100.0057538658636368454460654655344505063
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Jiri Patera (R)100.0074656976777472757775752555050770241925,000$
2Mack Guzda100.0073655676766371757573742555050740222925,000$
Scratches
1Kenneth Appleby100.0070655352686066556071622555050630283793,000$
TEAM AVERAGE100.007265596874667068717370255505071
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Egor AfanasyevWranglers (CGY)C/LW22111526-720563789355912.36%2040218.3124614370001291218.313495616011.2901000312
2Logan BrownWranglers (CGY)C/LW22111526-400454184296313.10%2340518.4323511370001301118.4361486021.2801000203
3Matt KierstedWranglers (CGY)D2291423-120513610149458.91%4852023.681011235000130200.00%04340000.8800000120
4Kevin GravelWranglers (CGY)D226814-52032329351386.45%4851423.39112632000032000.00%04127000.5400000010
5Matthew PhillipsWranglers (CGY)C226814-76034538419517.14%2540518.4400010350001280018.443042816000.6901000000
6Emil HeinemanWranglers (CGY)LW225510-80036327122427.04%2240818.550005350001310018.55192712000.4901000000
7Egor SokolovWranglers (CGY)LW22257-72022315627313.57%1927512.5200001000020112.5220273000.5100000010
8Mitchell BalmasWranglers (CGY)C22145-86017172111204.76%624211.0000002000000011.0016367000.4100000000
9Josh DoanWranglers (CGY)RW22415-16401715447309.09%523710.810000000000000.00%6189000.4200000000
10Henry BowlbyWranglers (CGY)C22145-19952323336283.03%928112.8000002000020012.801931211000.3600010000
11Hugh McGingWranglers (CGY)LW/RW22145-4281026202613193.85%1137517.09000536000020017.0921177000.2700002000
12Adam GaudetteWranglers (CGY)C/RW22134-6241019261610126.25%436416.56011135000001016.561929000.2200002000
13Collin AdamsWranglers (CGY)LW20044-16201113194120.00%423811.9100000000000011.91882000.3400000000
14Spencer SmallmanWranglers (CGY)RW22224-11281020183319266.06%1126712.1600002000010012.1611158000.3000101000
15Alex VlasicWranglers (CGY)D22044-2280182618780.00%2145020.48000440000029000.00%0517000.1800000000
16Colton PoolmanWranglers (CGY)D22224-1240823208810.00%3236316.530000200006000.00%01015000.2200000100
17Emil AndraeWranglers (CGY)D22123-1820281022964.55%1844320.16000039000131000.00%01413000.1400000000
18Michael VukojevicWranglers (CGY)D22022-1560151617560.00%1333915.410000000000000.00%086000.1200000000
19Ryan MurrayFlamesD2000-5005311210.00%23919.780002200000000.00%031000.00%00000000
Team Total or Average39663102165-191135354834728583335057.34%341657616.6169157037800062605446.34%1174388225030.5004115755
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mack GuzdaWranglers (CGY)133910.8605.047860066472270000.7504139010
2Jiri PateraWranglers (CGY)92700.8754.345390039311183000.00%095000
Team Total or Average2251610.8664.76132500105783453000.50042214010


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Clause Trade Block Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam GaudetteWranglers (CGY)C/RW261996-10-03No194 Lbs6 ft0NoNoNo2Pro & Farm902,500$672,174$902,500$672,174$0$0$No902,500$Link / NHL Link
Alex VlasicWranglers (CGY)D222001-06-05Yes218 Lbs6 ft6NoNoNo2Pro & Farm916,667$682,726$916,667$682,726$0$0$No916,667$Link / NHL Link
Collin AdamsWranglers (CGY)LW251998-04-24Yes200 Lbs5 ft9NoNoNo1Farm Only925,000$688,932$925,000$688,932$0$0$NoLink / NHL Link
Colton PoolmanWranglers (CGY)D271995-12-18No200 Lbs6 ft0NoNoNo1Pro & Farm787,500$586,523$787,500$586,523$0$0$NoLink / NHL Link
Egor AfanasyevWranglers (CGY)C/LW222001-01-23Yes201 Lbs6 ft4NoNoNo2Pro & Farm789,167$587,765$789,167$587,765$0$0$No789,167$Link / NHL Link
Egor SokolovWranglers (CGY)LW232000-06-07Yes222 Lbs6 ft3NoNoNo1Pro & Farm925,000$688,932$925,000$688,932$0$0$NoLink / NHL Link
Emil AndraeWranglers (CGY)D212002-02-23Yes176 Lbs5 ft9NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Emil HeinemanWranglers (CGY)LW212001-10-26Yes185 Lbs6 ft1NoNoNo2Pro & Farm897,500$668,451$897,500$668,451$0$0$No897,500$Link / NHL Link
Henry BowlbyWranglers (CGY)C261997-02-26Yes195 Lbs6 ft2NoNoNo2Pro & Farm776,364$578,229$776,364$578,229$0$0$No776,364$Link / NHL Link
Hugh McGingWranglers (CGY)LW/RW241998-07-11Yes176 Lbs5 ft8NoNoNo3Pro & Farm869,500$647,596$869,500$647,596$0$0$No869,500$869,500$Link / NHL Link
Jiri PateraWranglers (CGY)G241999-02-24Yes219 Lbs6 ft2NoNoNo1Pro & Farm925,000$688,932$925,000$688,932$0$0$NoLink / NHL Link
Josh DoanWranglers (CGY)RW212002-02-01Yes185 Lbs6 ft1NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Kenneth ApplebyWranglers (CGY)G281995-04-10No210 Lbs6 ft4NoNoNo3Pro & Farm793,000$590,620$793,000$590,620$0$0$No793,000$793,000$Link / NHL Link
Kevin GravelWranglers (CGY)D311992-03-06No205 Lbs6 ft4NoNoNo1Pro & Farm762,500$567,904$762,500$567,904$0$0$NoLink / NHL Link
Logan BrownWranglers (CGY)C/LW251998-03-05No228 Lbs6 ft6NoNoNo3Pro & Farm787,500$586,523$787,500$586,523$0$0$No787,500$787,500$Link / NHL Link
Mack GuzdaWranglers (CGY)G222001-01-11No215 Lbs6 ft5NoNoNo2Pro & Farm925,000$688,932$925,000$688,932$0$0$No925,000$Link / NHL Link
Matt KierstedWranglers (CGY)D251998-04-14Yes181 Lbs6 ft0NoNoNo3Pro & Farm878,750$654,486$878,750$654,486$0$0$No878,750$878,750$Link / NHL Link
Matthew PhillipsWranglers (CGY)C251998-04-06No140 Lbs5 ft7NoNoNo3Pro & Farm787,500$586,523$787,500$586,523$0$0$No787,500$787,500$Link / NHL Link
Michael VukojevicWranglers (CGY)D222001-06-08Yes215 Lbs6 ft3NoNoNo2Farm Only925,000$688,932$925,000$688,932$0$0$No925,000$Link / NHL Link
Mitchell BalmasWranglers (CGY)C251998-03-19Yes192 Lbs6 ft0NoNoNo3Pro & Farm750,000$558,594$750,000$558,594$0$0$No750,000$750,000$Link / NHL Link
Spencer SmallmanWranglers (CGY)RW261996-09-09No198 Lbs6 ft1NoNoNo3Pro & Farm777,750$579,262$777,750$579,262$0$0$No777,750$777,750$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2124.33198 Lbs6 ft12.00838,152$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Logan BrownEgor AfanasyevAdam Gaudette30122
2Emil HeinemanMatthew PhillipsHugh McGing30122
3Egor SokolovMitchell BalmasSpencer Smallman20122
4Collin AdamsHenry BowlbyJosh Doan20122
5 vs 5 Defence
Line #DefenceDefenceTime %PHYDFOF
1Kevin GravelMatt Kiersted30122
2Emil AndraeAlex Vlasic30122
3Colton PoolmanMichael Vukojevic20122
4Kevin GravelMatt Kiersted20122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Logan BrownEgor AfanasyevAdam Gaudette50122
2Emil HeinemanMatthew PhillipsHugh McGing50122
Power Play Defence
Line #DefenceDefenceTime %PHYDFOF
1Kevin GravelMatt Kiersted50122
2Emil AndraeAlex Vlasic50122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Egor AfanasyevLogan Brown50122
2Matthew PhillipsEmil Heineman50122
Penalty Kill 4 Players Defence
Line #DefenceDefenceTime %PHYDFOF
1Kevin GravelMatt Kiersted50122
2Emil AndraeAlex Vlasic50122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenceDefenceTime %PHYDFOF
1Egor Afanasyev50122Kevin GravelMatt Kiersted50122
2Matthew Phillips50122Emil AndraeAlex Vlasic50122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Egor AfanasyevLogan Brown50122
2Matthew PhillipsEmil Heineman50122
4 vs 4 Defence
Line #DefenceDefenceTime %PHYDFOF
1Kevin GravelMatt Kiersted50122
2Emil AndraeAlex Vlasic50122
Last Minute Offensive
Left WingCenterRight WingDefenceDefence
Logan BrownEgor AfanasyevAdam GaudetteKevin GravelMatt Kiersted
Last Minute Defensive
Left WingCenterRight WingDefenceDefence
Logan BrownEgor AfanasyevAdam GaudetteKevin GravelMatt Kiersted
Extra Forwards
Normal PowerPlayPenalty Kill
Egor Sokolov, Adam Gaudette, Hugh McGingEgor Sokolov, Adam GaudetteEgor Sokolov
Extra Defencemen
Normal PowerPlayPenalty Kill
Alex Vlasic, Colton Poolman, Michael VukojevicAlex VlasicAlex Vlasic, Colton Poolman
Penalty Shots
Egor Afanasyev, Logan Brown, Matthew Phillips, Emil Heineman, Egor Sokolov
Goalie
#1 : Mack Guzda, #2 : Jiri Patera
Custom OT Lines Forwards
Egor Afanasyev, Logan Brown, Matthew Phillips, Emil Heineman, Egor Sokolov, Adam Gaudette, Adam Gaudette, Hugh McGing, Spencer Smallman, Henry Bowlby, Josh Doan
Custom OT Lines Defencemen
Kevin Gravel, Matt Kiersted, Emil Andrae, Alex Vlasic, Colton Poolman


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals22000000963110000005321100000043141.00091524002518173912852643039552221424125.00%3233.33%020944646.86%19840748.65%13731543.49%483306491179352171
2Americans1010000015-4000000000001010000015-400.0001120025181734228526430393611428000.00%2150.00%020944646.86%19840748.65%13731543.49%483306491179352171
3Bears1000000112-1000000000001000000112-110.5001230025181734328526430393714426000.00%20100.00%020944646.86%19840748.65%13731543.49%483306491179352171
4Canucks1010000036-31010000036-30000000000000.0003580025181733528526430393525426300.00%220.00%020944646.86%19840748.65%13731543.49%483306491179352171
5Condors1010000026-4000000000001010000026-400.00024600251817331285264303934202626400.00%30100.00%020944646.86%19840748.65%13731543.49%483306491179352171
6Eagles1010000035-2000000000001010000035-200.0003580025181733428526430393619820200.00%4175.00%020944646.86%19840748.65%13731543.49%483306491179352171
7Firebirds2020000039-6000000000002020000039-600.00035800251817386285264303962328373133.33%40100.00%020944646.86%19840748.65%13731543.49%483306491179352171
8Griffins1010000027-5000000000001010000027-500.0002350025181733228526430393812420200.00%20100.00%020944646.86%19840748.65%13731543.49%483306491179352171
9Islanders1010000034-11010000034-10000000000000.0003580025181733928526430393620017000.00%000.00%020944646.86%19840748.65%13731543.49%483306491179352171
10Marlies1010000013-2000000000001010000013-200.000112002518173392852643039358425300.00%220.00%020944646.86%19840748.65%13731543.49%483306491179352171
11Monsters1010000057-2000000000001010000057-200.00059140025181735028526430393813419100.00%2150.00%020944646.86%19840748.65%13731543.49%483306491179352171
12Moose1010000014-31010000014-30000000000000.000123002518173332852643039289223100.00%10100.00%020944646.86%19840748.65%13731543.49%483306491179352171
13Penguins1010000027-5000000000001010000027-500.00022400251817327285264303946197182150.00%10100.00%020944646.86%19840748.65%13731543.49%483306491179352171
14Rocket1010000014-3000000000001010000014-300.0001120025181733828526430394421630200.00%30100.00%020944646.86%19840748.65%13731543.49%483306491179352171
15Senators1010000023-1000000000001010000023-100.0002350025181733228526430393611019100.00%000.00%020944646.86%19840748.65%13731543.49%483306491179352171
16Silver Knights10001000541100010005410000000000021.00059140025181734028526430393519619300.00%30100.00%020944646.86%19840748.65%13731543.49%483306491179352171
17Stars2000200014122100010007611000100076141.00014223600251817389285264303972289484375.00%20100.00%020944646.86%19840748.65%13731543.49%483306491179352171
18Thunderbirds1010000006-61010000006-60000000000000.00000000251817333285264303935131418600.00%220.00%020944646.86%19840748.65%13731543.49%483306491179352171
19Wolf Pack1010000056-11010000056-10000000000000.00058130025181734328526430394522421100.00%20100.00%020944646.86%19840748.65%13731543.49%483306491179352171
Total222160300163106-43815020002939-1014111010013467-33110.25063102165002518173857285264303978333813548242614.29%401172.50%020944646.86%19840748.65%13731543.49%483306491179352171
_Since Last GM Reset222160300163106-43815020002939-1014111010013467-33110.25063102165002518173857285264303978333813548242614.29%401172.50%020944646.86%19840748.65%13731543.49%483306491179352171
_Vs Conference1227030004058-18613020002129-8614010001929-10100.417406710700251817347228526430393921879825930516.67%24770.83%020944646.86%19840748.65%13731543.49%483306491179352171
_Vs Division504010001325-1220101000810-230300000515-1020.200132336002518173192285264303916696441081317.69%12283.33%020944646.86%19840748.65%13731543.49%483306491179352171

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2211W16310216585778333813548200
All Games
GPWLOTWOTL SOWSOLGFGA
22216300163106
Home Games
GPWLOTWOTL SOWSOLGFGA
81520002939
Visitor Games
GPWLOTWOTL SOWSOLGFGA
1411110013467
Last 10 Games
WLOTWOTL SOWSOL
370000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
42614.29%401172.50%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
28526430392518173
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
20944646.86%19840748.65%13731543.49%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
483306491179352171


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visiting Team Score Home Team Score ST OT SO RI Link
2 - 2023-10-119Moose4Wranglers1BLBoxScore
5 - 2023-10-1425Wranglers2Penguins7ALBoxScore
7 - 2023-10-1639Wranglers1Bears2ALXXBoxScore
10 - 2023-10-1951Wranglers1Americans5ALBoxScore
11 - 2023-10-2063Wranglers5Monsters7ALBoxScore
13 - 2023-10-2280Wranglers2Griffins7ALBoxScore
15 - 2023-10-2496Wolf Pack6Wranglers5BLBoxScore
17 - 2023-10-26109Thunderbirds6Wranglers0BLBoxScore
20 - 2023-10-29129Wranglers2Condors6ALBoxScore
23 - 2023-11-01142Stars6Wranglers7BWXBoxScore
26 - 2023-11-04170Wranglers2Firebirds4ALBoxScore
29 - 2023-11-07186Admirals3Wranglers5BWBoxScore
32 - 2023-11-10207Wranglers1Marlies3ALBoxScore
33 - 2023-11-11213Wranglers2Senators3ALBoxScore
36 - 2023-11-14231Wranglers1Rocket4ALBoxScore
38 - 2023-11-16247Canucks6Wranglers3BLBoxScore
40 - 2023-11-18258Islanders4Wranglers3BLBoxScore
42 - 2023-11-20277Wranglers1Firebirds5ALBoxScore
44 - 2023-11-22288Wranglers4Admirals3AWBoxScore
46 - 2023-11-24305Wranglers7Stars6AWXBoxScore
47 - 2023-11-25315Wranglers3Eagles5ALBoxScore
49 - 2023-11-27325Silver Knights4Wranglers5BWXBoxScore
52 - 2023-11-30351Stars-Wranglers-
54 - 2023-12-02368Canucks-Wranglers-
57 - 2023-12-05385Wild-Wranglers-
59 - 2023-12-07401Wolves-Wranglers-
61 - 2023-12-09409Comets-Wranglers-
63 - 2023-12-11431Wranglers-Eagles-
64 - 2023-12-12439Wranglers-Silver Knights-
66 - 2023-12-14450Wranglers-Wild-
68 - 2023-12-16472Crunch-Wranglers-
70 - 2023-12-18483Checkers-Wranglers-
73 - 2023-12-21508Wranglers-Gulls-
75 - 2023-12-23526Wranglers-Reign-
79 - 2023-12-27539Firebirds-Wranglers-
83 - 2023-12-31570Phantoms-Wranglers-
85 - 2024-01-02578Wranglers-Wild-
87 - 2024-01-04595Wranglers-Admirals-
89 - 2024-01-06605Wranglers-Phantoms-
90 - 2024-01-07617Wranglers-IceHogs-
92 - 2024-01-09634Senators-Wranglers-
94 - 2024-01-11649Wranglers-Roadrunners-
96 - 2024-01-13668Wranglers-Silver Knights-
99 - 2024-01-16687Roadrunners-Wranglers-
101 - 2024-01-18697Marlies-Wranglers-
103 - 2024-01-20716Condors-Wranglers-
106 - 2024-01-23735Thunderbirds-Wranglers-
108 - 2024-01-25753Monsters-Wranglers-
110 - 2024-01-27772IceHogs-Wranglers-
120 - 2024-02-06783Wranglers-Bruins-
122 - 2024-02-08796Wranglers-Comets-
124 - 2024-02-10807Wranglers-Islanders-
126 - 2024-02-12820Wranglers-Wolf Pack-
129 - 2024-02-15846Barracuda-Wranglers-
131 - 2024-02-17852Griffins-Wranglers-
133 - 2024-02-19873Moose-Wranglers-
136 - 2024-02-22896Bruins-Wranglers-
138 - 2024-02-24914Wranglers-Condors-
141 - 2024-02-27935Reign-Wranglers-
145 - 2024-03-02968Penguins-Wranglers-
147 - 2024-03-04980Firebirds-Wranglers-
150 - 2024-03-07999Wranglers-Crunch-
Trade Deadline --- Trades cannot be done after this date
152 - 2024-03-091013Wranglers-Checkers-
153 - 2024-03-101024Wranglers-Wolves-
155 - 2024-03-121039Eagles-Wranglers-
157 - 2024-03-141055Silver Knights-Wranglers-
159 - 2024-03-161064Rocket-Wranglers-
161 - 2024-03-181080Bears-Wranglers-
166 - 2024-03-231120Wranglers-Canucks-
167 - 2024-03-241133Americans-Wranglers-
169 - 2024-03-261143Wranglers-IceHogs-
171 - 2024-03-281157Wranglers-Thunderbirds-
173 - 2024-03-301179Reign-Wranglers-
176 - 2024-04-021195Gulls-Wranglers-
178 - 2024-04-041209Wranglers-Moose-
180 - 2024-04-061227Condors-Wranglers-
183 - 2024-04-091251Wranglers-Barracuda-
185 - 2024-04-111264Wranglers-Reign-
186 - 2024-04-121268Wranglers-Gulls-
188 - 2024-04-141286Roadrunners-Wranglers-
190 - 2024-04-161302Wranglers-Canucks-
192 - 2024-04-181309Barracuda-Wranglers-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity35001500
Ticket Price5025
Attendance28,00012,000
Attendance PCT100.00%100.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
33 5000 - 100.00% 108,375$867,000$5000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
4,428,431$ 17,601,198$ 17,601,198$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
91,673$ 4,428,431$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
3,576,375$ 143 91,673$ 13,109,239$




Wranglers

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Evan Bouchard7229414308-23018811572040.83%156188226.1558260138415112180.00%573.2700
2Hugh McGing1863088118-89652891693807.89%97360119.36225274102275244.56%10.6603
3Seth Jarvis825100105-11021791164121.21%63163619.961343573224150053.10%01.2812
4Henry Bowlby104335689-143116015127412.04%76211220.3267132412364140.85%10.8401
5Logan Brown104345387-1781508628511.93%36174116.742351100033447.61%21.0001

Wranglers

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Kenneth Appleby67352840.9013.4940250023423671661800.5002
2Colten Ellis155910.8744.209014163500345110.0000
3Mack Guzda133910.8605.047860066472270000.7504
4Jiri Patera92700.8754.345390039311183000.0000

Wranglers

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
202182195202711318573-25541132201410170256-864163001301148317-1695231851082814010611792178805326326192126811169819911936131.61%1495364.43%6509103649.13%467103645.08%704148247.50%1967141418705611098507
202282373703401298299-1412513012001701304041122402201128169-418529853182911991108632658911893840172868104427816691403424.29%1392780.58%11675138648.70%536118945.08%526113146.51%1701102918656751366683
2023222160300163106-43815020002939-1014111010013467-331163102165002518173857285264303978333813548242614.29%401172.50%020944646.86%19840748.65%13731543.49%483306491179352171
Total Regular Season18658105081113679978-29990394004610369425-5696196504503310553-2431486791143182225124234220985303119616891775645577721932111414237510126.93%3289172.26%171393286848.57%1201263245.63%1367292846.69%415127514226141728181361

Wranglers

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Wranglers

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA