Moose
GP: 20 | W: 10 | L: 8 | OTL: 2 | P: 22
GF: 65 | GA: 60 | PP%: 35.48% | PK%: 75.76%
GM : Trevor Sifton | Morale : 50 | Team Overall : 64
Next Games #332 vs Stars
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Moose
10-8-2, 22pts
3
FINAL
5 Checkers
10-7-4, 24pts
Team Stats
W1StreakW2
6-3-1Home Record7-1-2
4-5-1Away Record3-6-2
6-4-0Last 10 Games5-3-2
3.253.67
3.002.95
35.48%18.92%
75.76%76.00%
Moose
10-8-2, 22pts
5
FINAL
2 Admirals
3-16-1, 7pts
Team Stats
W1StreakL4
6-3-1Home Record3-7-1
4-5-1Away Record0-9-0
6-4-0Last 10 Games1-8-1
3.252.55
3.005.40
35.48%19.05%
75.76%60.00%
Stars
5-11-3, 13pts
2023-11-28
Moose
10-8-2, 22pts
Team Stats
OTL1StreakW1
4-5-16-3-1
1-6-24-5-1
4-4-2Last 10 Games6-4-0
2.793.25
4.163.00
6.90%35.48%
66.67%75.76%
Condors
8-12-0, 16pts
2023-11-30
Moose
10-8-2, 22pts
Team Stats
L1StreakW1
4-5-06-3-1
4-7-04-5-1
3-7-0Last 10 Games6-4-0
3.553.25
3.903.00
21.62%35.48%
78.57%75.76%
IceHogs
8-9-2, 18pts
2023-12-02
Moose
10-8-2, 22pts
Team Stats
OTL1StreakW1
5-1-26-3-1
3-8-04-5-1
4-4-2Last 10 Games6-4-0
2.843.25
3.583.00
23.08%35.48%
58.33%75.76%
Lukas ReichelGoals
Lukas Reichel
16
Lukas ReichelAssists
Lukas Reichel
13
Lukas ReichelPoints
Lukas Reichel
29
Lukas ReichelPlus/Minus
Lukas Reichel
7
Nico DawsWins
Nico Daws
6
Joseph WollSave Percentage
Joseph Woll
0.921

Team Stats

65
3.25 GFG
Shots For
642
32.10 Avg

35.5%
11 GF

35.9%
Goals Against
60
3.00 GAA
Shots Against
749
37.45 Avg

75.8%
8 GA

39.1%


General ManagerTrevor Sifton
Central Division
Western Conference
Declan Chisholm
Lukas Reichel




Arena Capacity5,000
Attendance5,000
5,000




20
19
39 / 55
Prospects25


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Lukas Reichel (R) (A)0XX100.00675197708466556443727355686868050760212925,000$
2Morgan Geekie67XX100.00715296728249836265717174676767050760242952,750$
3Lane Pederson (R)18X100.00825591728350555856677055646464050730253990,675$
4Axel Jonsson-Fjallby (R)0X100.00725197718347605840687060646464050730253813,750$
5Will Bitten (R)14X100.00526483555480934265596444532540050620242952,750$
6Chase De Leo58XXX100.00525884555865754265606444532540050610272840,000$
7Chris Wagner0XX100.00546181545473844165576441532540050600321775,000$
8Travis Barron0X100.00556279525375873836576439512540050600241925,000$
9Cole Fonstad (R)0X100.00525384555558614336596438542540050590232925,000$
10Mike Hardman (R)86XX100.00535282545558584236596440532540050590242952,750$
11Chase Pearson22X100.00535582525359683965576436512540050570252909,090$
12Stelio Mattheos (R)0X100.00526083515369803665566333502540050570243841,533$
13Declan Chisholm (R) (C)20X100.00525783565662724336626443542540050610231925,000$
14William Villeneuve (R)0X100.00535782545463734036606344522540050600212817,778$
15Dan Renouf0X100.00546281525274863736576340502540050590291762,500$
16Matt Bartkowski0X100.00546381525276883736576336502540050590351750,000$
17Simon Lundmark (R)0X100.00525984525367773836586339512540050580222850,833$
18Mikko Kokkonen (R)0X100.00534882515358493736576337502540050570222846,667$
Scratches
TEAM AVERAGE100.0057578557606472444761654455344605063
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Joseph Woll (R)100.0086655370807274818748842651050790243797,333$
2Nico Daws (R)100.0073656877767573767774762555050770222850,833$
Scratches
TEAM AVERAGE100.008065617478747479826180265305078
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Lukas ReichelMoose (WIN)LW/RW20161329720313792255617.39%1838419.220556211015272219.22246515021.5100000203
2Axel Jonsson-FjallbyMoose (WIN)LW20101222-140315680296412.50%2637518.7642611250000252018.76145227001.1700000110
3Lane PedersonMoose (WIN)C2091120-100514289315710.11%2237718.892469250000272118.893046110001.0600000112
4Reese JohnsonJetsC/RW119514300333156122116.07%2523121.0320211120001121021.031443019021.2100000121
5Ville HeinolaJetsD153811-62030295825325.17%2836124.11022516000122100.00%02823000.6100000110
6Will BittenMoose (WIN)C202911-5343032324618374.35%1632316.20022210000001016.202112413000.6800015000
7Chase De LeoMoose (WIN)C/LW/RW2044864013212231418.18%730915.472025210001160015.473163000.5200000001
8Morgan GeekieMoose (WIN)C/RW91784001020165206.25%1511412.6900000000000012.69101159001.4000000000
9Mike HardmanMoose (WIN)LW/RW20268-60031155115343.92%831315.6600000000000015.6610295000.5100000010
10Travis BarronMoose (WIN)LW20246-5401719349195.88%1032216.1200000000060016.1212206000.3700000010
11Declan ChisholmMoose (WIN)D20246-31201615158813.33%2848224.11101224000028000.00%01316000.2500000001
12Chris WagnerMoose (WIN)C/RW20224-2221015984625.00%833016.53000125000000016.531705000.2400101000
13Dan RenoufMoose (WIN)D2013422115121886412.50%2339819.90022021000025000.00%0118000.2000021000
14Cole FonstadMoose (WIN)LW201343001912237104.35%41979.880000000000109.887138000.4100000001
15Stelio MattheosMoose (WIN)C200223751298150.00%21788.900000000000008.909711000.2200001000
16William VilleneuveMoose (WIN)D2002212016249880.00%3843121.57000122011026000.00%01028000.0900000000
17Chase PearsonMoose (WIN)C20011-100623260.00%0854.250000000000004.251924000.2400000000
18Simon LundmarkMoose (WIN)D2010136081212748.33%1532916.460000900001010.00%01015000.0600000000
19Matt BartkowskiMoose (WIN)D5000455132100.00%27915.850000000000000.00%012000.00%00100000
20Mikko KokkonenMoose (WIN)D20000340131010580.00%1532216.1400001000011000.00%0315000.00%00000000
Team Total or Average360659616191296539741664222141310.12%310594716.5211172853240112823210449.14%991394232040.5400238679
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Nico DawsMoose (WIN)96300.9183.005400127329197000.00%0911221
2Joseph WollMoose (WIN)114520.9213.016592033420275000.00%0119311
Team Total or Average2010820.9203.0012002160749472000.00002020532


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Clause Trade Block Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Axel Jonsson-FjallbyMoose (WIN)LW251998-02-10Yes194 Lbs6 ft1NoNoNo3Pro & Farm813,750$606,074$813,750$606,074$0$0$No813,750$813,750$Link / NHL Link
Chase De LeoMoose (WIN)C/LW/RW271995-10-25No185 Lbs5 ft9NoNoNo2Pro & Farm840,000$625,625$840,000$625,625$0$0$No840,000$Link / NHL Link
Chase PearsonMoose (WIN)C251997-08-23No202 Lbs6 ft3NoNoNo2Pro & Farm909,090$677,083$909,090$677,083$0$0$No909,090$Link / NHL Link
Chris WagnerMoose (WIN)C/RW321991-05-27No191 Lbs6 ft0NoNoNo1Pro & Farm775,000$577,214$775,000$577,214$0$0$NoLink / NHL Link
Cole FonstadMoose (WIN)LW232000-04-24Yes165 Lbs5 ft10NoNoNo2Pro & Farm925,000$688,932$925,000$688,932$0$0$No925,000$Link / NHL Link
Dan RenoufMoose (WIN)D291994-06-01No200 Lbs6 ft3NoNoNo1Pro & Farm762,500$567,904$762,500$567,904$0$0$NoLink / NHL Link
Declan ChisholmMoose (WIN)D232000-01-12Yes185 Lbs6 ft1NoNoNo1Pro & Farm925,000$688,932$925,000$688,932$0$0$NoLink / NHL Link
Joseph WollMoose (WIN)G241998-07-12Yes203 Lbs6 ft4NoNoNo3Pro & Farm797,333$593,847$797,333$593,847$0$0$No797,333$797,333$Link / NHL Link
Lane PedersonMoose (WIN)C251997-08-04Yes190 Lbs6 ft0NoNoNo3Pro & Farm990,675$737,846$990,675$737,846$0$0$No990,675$990,675$Link / NHL Link
Lukas ReichelMoose (WIN)LW/RW212002-05-17Yes170 Lbs6 ft0NoNoNo2Pro & Farm925,000$688,932$925,000$688,932$0$0$No925,000$Link / NHL Link
Matt BartkowskiMoose (WIN)D351988-06-04No201 Lbs6 ft1NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Mike HardmanMoose (WIN)LW/RW241999-02-05Yes205 Lbs6 ft2NoNoNo2Pro & Farm952,750$709,600$952,750$709,600$0$0$No952,750$Link / NHL Link
Mikko KokkonenMoose (WIN)D222001-01-18Yes198 Lbs6 ft2NoNoNo2Pro & Farm846,667$630,591$846,667$630,591$0$0$No846,667$Link / NHL Link
Morgan GeekieMoose (WIN)C/RW241998-07-20No200 Lbs6 ft3NoNoNo2Pro & Farm952,750$709,600$952,750$709,600$0$0$No952,750$Link / NHL Link
Nico DawsMoose (WIN)G222000-12-22Yes203 Lbs6 ft4NoNoNo2Pro & Farm850,833$633,693$850,833$633,693$0$0$No850,833$Link / NHL Link
Simon LundmarkMoose (WIN)D222000-10-08Yes201 Lbs6 ft2NoNoNo2Pro & Farm850,833$633,693$850,833$633,693$0$0$No850,833$Link / NHL Link
Stelio MattheosMoose (WIN)C241999-06-14Yes196 Lbs6 ft1NoNoNo3Pro & Farm841,533$626,767$841,533$626,767$0$0$No841,533$841,533$Link / NHL Link
Travis BarronMoose (WIN)LW241998-08-17No205 Lbs6 ft1NoNoNo1Pro & Farm925,000$688,932$925,000$688,932$0$0$NoLink / NHL Link
Will BittenMoose (WIN)C241998-07-10Yes180 Lbs5 ft11NoNoNo2Pro & Farm952,750$709,600$952,750$709,600$0$0$No952,750$Link / NHL Link
William VilleneuveMoose (WIN)D212002-03-20Yes184 Lbs6 ft2NoNoNo2Pro & Farm817,778$609,074$817,778$609,074$0$0$No817,778$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2024.80193 Lbs6 ft11.95870,212$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Lukas ReichelMorgan GeekieChase De Leo30122
2Axel Jonsson-FjallbyLane PedersonChris Wagner30122
3Travis BarronWill BittenMike Hardman20122
4Cole FonstadStelio MattheosLukas Reichel20122
5 vs 5 Defence
Line #DefenceDefenceTime %PHYDFOF
1Matt BartkowskiDeclan Chisholm30122
2William VilleneuveDan Renouf30122
3Simon LundmarkMikko Kokkonen20122
4William VilleneuveDeclan Chisholm20122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Lukas ReichelWill BittenChase De Leo50122
2Axel Jonsson-FjallbyLane PedersonChris Wagner50122
Power Play Defence
Line #DefenceDefenceTime %PHYDFOF
1Simon LundmarkDeclan Chisholm50122
2William VilleneuveDan Renouf50122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Chase De LeoLukas Reichel50122
2Lane PedersonAxel Jonsson-Fjallby50122
Penalty Kill 4 Players Defence
Line #DefenceDefenceTime %PHYDFOF
1Mikko KokkonenDeclan Chisholm50122
2William VilleneuveDan Renouf50122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenceDefenceTime %PHYDFOF
1Lane Pederson50122Mikko KokkonenDeclan Chisholm50122
2Lukas Reichel50122William VilleneuveDan Renouf50122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Morgan GeekieLukas Reichel50122
2Lane PedersonAxel Jonsson-Fjallby50122
4 vs 4 Defence
Line #DefenceDefenceTime %PHYDFOF
1Simon LundmarkDeclan Chisholm50122
2William VilleneuveDan Renouf50122
Last Minute Offensive
Left WingCenterRight WingDefenceDefence
Lukas ReichelMorgan GeekieChase De LeoWilliam VilleneuveDeclan Chisholm
Last Minute Defensive
Left WingCenterRight WingDefenceDefence
Lukas ReichelMorgan GeekieChase De LeoWilliam VilleneuveDeclan Chisholm
Extra Forwards
Normal PowerPlayPenalty Kill
Chase Pearson, Will Bitten, Travis BarronChase Pearson, Will BittenTravis Barron
Extra Defencemen
Normal PowerPlayPenalty Kill
Simon Lundmark, Mikko Kokkonen, William VilleneuveSimon LundmarkMikko Kokkonen, William Villeneuve
Penalty Shots
Chase De Leo, Lukas Reichel, Lane Pederson, Axel Jonsson-Fjallby, Will Bitten
Goalie
#1 : Nico Daws, #2 : Joseph Woll
Custom OT Lines Forwards
Morgan Geekie, Lukas Reichel, Lane Pederson, Axel Jonsson-Fjallby, Will Bitten, Chase De Leo, Chase De Leo, Travis Barron, Chris Wagner, Cole Fonstad, Mike Hardman
Custom OT Lines Defencemen
Matt Bartkowski, Declan Chisholm, William Villeneuve, Dan Renouf, Simon Lundmark


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2200000012210110000007071100000052341.000122032012024192751922392083733013436233.33%40100.00%017035448.02%20538653.11%11224745.34%408249472164321156
2Americans10001000321100010003210000000000021.00034700202419227192239208344146163133.33%30100.00%017035448.02%20538653.11%11224745.34%408249472164321156
3Checkers2010100056-1100010002111010000035-220.500581300202419259192239208374264453133.33%2150.00%017035448.02%20538653.11%11224745.34%408249472164321156
4Comets1010000057-21010000057-20000000000000.00057120020241923519223920834123216000.00%10100.00%017035448.02%20538653.11%11224745.34%408249472164321156
5Condors11000000422000000000001100000042221.00047110020241923219223920833719181911100.00%4175.00%017035448.02%20538653.11%11224745.34%408249472164321156
6Crunch11000000312000000000001100000031221.00033600202419231192239208328171120100.00%3166.67%017035448.02%20538653.11%11224745.34%408249472164321156
7Griffins1010000026-4000000000001010000026-400.000224002024192401922392083391614282150.00%2150.00%017035448.02%20538653.11%11224745.34%408249472164321156
8Reign1000010034-11000010034-10000000000010.50035800202419224192239208338221625100.00%3166.67%017035448.02%20538653.11%11224745.34%408249472164321156
9Roadrunners21100000431110000003121010000012-120.500461000202419261192239208363281233300.00%10100.00%017035448.02%20538653.11%11224745.34%408249472164321156
10Rocket1000010012-1000000000001000010012-110.5001120020241923819223920833812221100.00%10100.00%017035448.02%20538653.11%11224745.34%408249472164321156
11Silver Knights2110000010100110000005321010000057-220.50010142400202419267192239208388329355360.00%20100.00%017035448.02%20538653.11%11224745.34%408249472164321156
12Stars11000000431110000004310000000000021.0004590020241922519223920833514224000.00%10100.00%117035448.02%20538653.11%11224745.34%408249472164321156
13Thunderbirds2020000049-51010000023-11010000026-400.000459002024192731922392083752813352150.00%4250.00%017035448.02%20538653.11%11224745.34%408249472164321156
14Wolf Pack1010000012-11010000012-10000000000000.00011200202419227192239208343207182150.00%110.00%017035448.02%20538653.11%11224745.34%408249472164321156
15Wranglers11000000413000000000001100000041321.0004812002024192281922392083339219100.00%10100.00%017035448.02%20538653.11%11224745.34%408249472164321156
Total20880220065605104302100352691045001003034-4220.55065961610120241926421922392083749310131397311135.48%33875.76%117035448.02%20538653.11%11224745.34%408249472164321156
_Since Last GM Reset20880220065605104302100352691045001003034-4220.55065961610120241926421922392083749310131397311135.48%33875.76%117035448.02%20538653.11%11224745.34%408249472164321156
_Vs Conference127400100453411641001002414106330000021201150.625457011501202419238519223920834421828523319736.84%20480.00%117035448.02%20538653.11%11224745.34%408249472164321156
_Vs Division743000002417743100000167931200000810-280.57124366001202419223419223920832461004013511327.27%10280.00%117035448.02%20538653.11%11224745.34%408249472164321156

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2022W1659616164274931013139701
All Games
GPWLOTWOTL SOWSOLGFGA
208822006560
Home Games
GPWLOTWOTL SOWSOLGFGA
104321003526
Visitor Games
GPWLOTWOTL SOWSOLGFGA
104501003034
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
311135.48%33875.76%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
19223920832024192
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
17035448.02%20538653.11%11224745.34%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
408249472164321156


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visiting Team Score Home Team Score ST OT SO RI Link
2 - 2023-10-119Moose4Wranglers1AWBoxScore
5 - 2023-10-1420Checkers1Moose2BWXBoxScore
8 - 2023-10-1745Reign4Moose3BLXBoxScore
10 - 2023-10-1958Silver Knights3Moose5BWBoxScore
12 - 2023-10-2178Moose4Condors2AWBoxScore
15 - 2023-10-2493Thunderbirds3Moose2BLBoxScore
17 - 2023-10-26102Moose2Griffins6ALBoxScore
19 - 2023-10-28122Moose1Rocket2ALXBoxScore
21 - 2023-10-30134Wolf Pack2Moose1BLBoxScore
24 - 2023-11-02155Moose5Silver Knights7ALBoxScore
26 - 2023-11-04160Moose1Roadrunners2ALBoxScore
29 - 2023-11-07184Moose2Thunderbirds6ALBoxScore
31 - 2023-11-09200Admirals0Moose7BWBoxScore
33 - 2023-11-11211Stars3Moose4BWBoxScore
36 - 2023-11-14236Comets7Moose5BLBoxScore
39 - 2023-11-17252Americans2Moose3BWXBoxScore
40 - 2023-11-18259Roadrunners1Moose3BWBoxScore
44 - 2023-11-22284Moose3Crunch1AWBoxScore
46 - 2023-11-24304Moose3Checkers5ALBoxScore
48 - 2023-11-26319Moose5Admirals2AWBoxScore
50 - 2023-11-28332Stars-Moose-
52 - 2023-11-30349Condors-Moose-
54 - 2023-12-02357IceHogs-Moose-
56 - 2023-12-04376Wolves-Moose-
59 - 2023-12-07402Moose-Eagles-
62 - 2023-12-10425Moose-Gulls-
64 - 2023-12-12441Moose-Barracuda-
65 - 2023-12-13446Moose-Reign-
68 - 2023-12-16462Eagles-Moose-
70 - 2023-12-18481Rocket-Moose-
72 - 2023-12-20495Griffins-Moose-
74 - 2023-12-22512Bruins-Moose-
79 - 2023-12-27538Moose-IceHogs-
82 - 2023-12-30555Wild-Moose-
83 - 2023-12-31564Moose-Wild-
85 - 2024-01-02580Crunch-Moose-
87 - 2024-01-04601Moose-Barracuda-
88 - 2024-01-05604Moose-Gulls-
90 - 2024-01-07619Moose-Roadrunners-
92 - 2024-01-09631Monsters-Moose-
94 - 2024-01-11648IceHogs-Moose-
96 - 2024-01-13657Phantoms-Moose-
99 - 2024-01-16685Islanders-Moose-
103 - 2024-01-20709Moose-Senators-
105 - 2024-01-22724Moose-Bruins-
107 - 2024-01-24740Moose-Marlies-
110 - 2024-01-27763Marlies-Moose-
120 - 2024-02-06788Moose-Penguins-
122 - 2024-02-08797Moose-Phantoms-
124 - 2024-02-10810Penguins-Moose-
128 - 2024-02-14834Barracuda-Moose-
131 - 2024-02-17860Moose-Canucks-
133 - 2024-02-19873Moose-Wranglers-
134 - 2024-02-20880Wild-Moose-
137 - 2024-02-23901Moose-IceHogs-
139 - 2024-02-25919Roadrunners-Moose-
141 - 2024-02-27934Thunderbirds-Moose-
143 - 2024-02-29947Moose-Stars-
145 - 2024-03-02956Moose-Wolves-
146 - 2024-03-03972Moose-Americans-
148 - 2024-03-05986Firebirds-Moose-
151 - 2024-03-081008Moose-Firebirds-
Trade Deadline --- Trades cannot be done after this date
152 - 2024-03-091019Moose-Canucks-
154 - 2024-03-111029Bears-Moose-
156 - 2024-03-131042Admirals-Moose-
158 - 2024-03-151057Gulls-Moose-
160 - 2024-03-171076Moose-Monsters-
162 - 2024-03-191085Moose-Wolf Pack-
164 - 2024-03-211102Moose-Comets-
166 - 2024-03-231113Moose-Islanders-
167 - 2024-03-241124Moose-Bears-
169 - 2024-03-261142Condors-Moose-
171 - 2024-03-281158Silver Knights-Moose-
173 - 2024-03-301170Senators-Moose-
175 - 2024-04-011187Reign-Moose-
178 - 2024-04-041209Wranglers-Moose-
180 - 2024-04-061219Moose-Wild-
183 - 2024-04-091247Moose-Admirals-
185 - 2024-04-111262Moose-Stars-
187 - 2024-04-131272Moose-Eagles-
190 - 2024-04-161300Firebirds-Moose-
192 - 2024-04-181308Canucks-Moose-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity35001500
Ticket Price5025
Attendance35,00015,000
Attendance PCT100.00%100.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
31 5000 - 100.00% 108,375$1,083,750$5000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
4,467,450$ 17,404,242$ 17,404,242$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
90,647$ 4,467,450$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
3,359,625$ 143 90,647$ 12,962,521$




Moose

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Lane Pederson1841522133651321636619366123.00%110388421.112536617369151914750.72%171.88510
2Sebastien Aho1641951653601684917413455335.26%143356621.75292453827613191340.00%232.0212
3Mike Hardman184791582371153630111543718.08%48313617.041020303513457245.70%51.5100
4Morgan Geekie911021312331361813311027936.56%57167518.411123343240469252.86%152.7801
5Chase De Leo1416115821916922419717822327.35%69247817.58522272323564457.38%21.7736

Moose

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Beck Warm75541730.8055.2543810538319681088610.72711
2Nico Daws91464050.9053.3154928330331991852410.70634
3Joseph Woll114520.9213.016592033420275000.0000
4Sam Montembeault11000.7317.00600072612000.0000

Moose

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
20218254180423178941837141307001214302082224124110411035921014912578912912080170345261176251708268827902166872165614842059747.32%2545976.77%25668122454.58%648122352.98%999178955.84%1784114218955961263660
202282333704233270280-10412016021021391281141132102131131152-218527046073012998975142696943885852502871102434916111764324.43%1714076.61%10607136644.44%728156246.61%464106343.65%1719104818936771344670
202320880220065605104302100352691045001003034-42265961610120241926421922392083749310131397311135.48%33875.76%117035448.02%20538653.11%11224745.34%408249472164321156
Total Regular Season1849563010664112475836692542604323604362242924137063415203961242321124184729712101194583551925855113519501942843578622062136349241215136.65%45810776.64%361445294449.08%1581317149.86%1575309950.82%391324414261143829291487
Playoff
20211156000008576953200000453114624000004045-51085136221100422814321010611992375165152142321546.88%21576.19%29717655.11%11417365.90%13824257.02%2371562588016484
Total Playoff1156000008576953200000453114624000004045-51085136221100422814321010611992375165152142321546.88%21576.19%29717655.11%11417365.90%13824257.02%2371562588016484

Moose

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Lane Pederson11191736-1011186330.16%1425222.956391901113050.00%42.8500
2Chase De Leo111117282421253828.95%1425723.38257410140059.84%02.1800
3Sebastien Aho11819271726122334.78%1017015.5101100000000.00%03.1600
4Morgan Geekie11141125425163441.18%1521719.76347601101254.93%12.3000
5Eetu Luostarinen11817252016202729.63%622120.17055710110069.23%02.2500

Moose

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Beck Warm115600.7996.836590075374208410.0000