´╗┐

Phantoms
GP: 21 | W: 1 | L: 20 | OTL: 0 | P: 2
GF: 40 | GA: 135 | PP%: 16.67% | PK%: 73.08%
GM : Kyle Collington | Morale : 50 | Team Overall : 61
Next Games #328 vs Wolves
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Wolf Pack
9-10-1, 19pts
6
FINAL
3 Phantoms
1-20-0, 2pts
Team Stats
L1StreakL6
4-4-0Home Record0-10-0
5-6-1Away Record1-10-0
4-5-1Last 10 Games1-9-0
4.001.90
5.356.43
30.56%16.67%
74.29%73.08%
Phantoms
1-20-0, 2pts
2
FINAL
10 Islanders
15-5-0, 30pts
Team Stats
L6StreakW1
0-10-0Home Record11-0-0
1-10-0Away Record4-5-0
1-9-0Last 10 Games7-3-0
1.905.15
6.433.75
16.67%21.43%
73.08%79.31%
Wolves
19-1-0, 38pts
2023-11-28
Phantoms
1-20-0, 2pts
Team Stats
W8StreakL6
9-0-00-10-0
10-1-01-10-0
9-1-0Last 10 Games1-9-0
5.201.90
1.556.43
23.53%16.67%
88.37%73.08%
Comets
11-8-0, 22pts
2023-11-30
Phantoms
1-20-0, 2pts
Team Stats
W2StreakL6
7-3-00-10-0
4-5-01-10-0
6-4-0Last 10 Games1-9-0
4.161.90
3.746.43
19.44%16.67%
71.43%73.08%
Phantoms
1-20-0, 2pts
2023-12-02
Penguins
13-5-2, 28pts
Team Stats
L6StreakOTL1
0-10-08-2-1
1-10-05-3-1
1-9-0Last 10 Games5-4-1
1.904.10
6.432.60
16.67%29.73%
73.08%74.19%
Jacob PerreaultGoals
Jacob Perreault
7
Sam AnasAssists
Sam Anas
8
Sam AnasPoints
Sam Anas
13
Tyler MaddenPlus/Minus
Tyler Madden
1
J-F BerubeWins
J-F Berube
1
J-F BerubeSave Percentage
J-F Berube
0.845

Team Stats

40
1.90 GFG
Shots For
681
32.43 Avg

16.7%
5 GF

34.0%
Goals Against
135
6.43 GAA
Shots Against
866
41.24 Avg

73.1%
7 GA

35.8%


General ManagerKyle Collington
Metropolitan Division
Eastern Conference




Arena Capacity5,000
Attendance5,000
5,000




25
19
44 / 55
Prospects34


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Mitchell McLain0X100.00556879535389993965576441522540050620291750,000$
2Mitchell Stephens0X100.00536482555480934265596444532540050620262971,250$
3Peter Abbandonato (R)0X100.00524984585758514665646449552540050620251750,000$
4Tyler Boland (R)0X100.00513785586058454665616550562540050620261750,000$
5Sam Anas33X100.00516885545488994165586441522540050620301750,000$
6Gabriel Fortier (R)0X100.00526683535385984036586443522540050620231925,000$
7Dominik Shine0X100.00556680535383974036576439522540050610301750,000$
8Joseph Gambardella0X100.00526384545476884136596443522540050610291750,000$
9Tyler Madden (R)0X100.00525484555558654465596543542540050600231925,000$
10Jacob Perreault (R)0X100.00545881545465754036586438522540050590212925,000$
11Tuukka Tieksola (R)0X100.00525683545461714036596443522540050590221823,333$
12Evan Weinger0X100.00526083525371823736566435502540050580263840,000$
13Chad Nychuk0X100.00513785536258453936606343512540050590221750,000$
14Devante Stephens (R)0X100.00546081515269803736576340502540050590261750,000$
15Jimmy Oligny0X100.00536482515279913636566336502540050590301750,000$
16Madison Bowey0X100.00535781535462723936586441512540050590281750,000$
17Wyatte Wylie (R)0X100.00526384525276883736576337502540050590231925,000$
18Hunter Skinner (R)0X100.00525583525358663736576338502540050570222925,000$
Scratches
1Brayden Burke0X100.00525384525658623936586341512540050580262750,000$
2Brent Gates Jr. (R)0X100.00525384535458613936586439512540050580253787,500$
3Colt Conrad (R)0X100.00535283525458603865576437512540050570263840,000$
4Ole Bjorgvik-Holm (R)0X100.00524384515258453636566334492540050560212825,000$
TEAM AVERAGE100.0053578353546874404558644152254005060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1J-F Berube100.0072655374746271717072722555050710311750,000$
2Ryan Bednard100.0075655368776074596376682555050690261750,000$
Scratches
1Jussi Olkinuora (R)100.0070655370726167676471682555050680321750,000$
TEAM AVERAGE100.007265537174617166667369255505069
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sam AnasPhantoms (PHI)C215813-23472527495727428.77%1340319.201015230000191019.202952113000.6400212010
2Joseph GambardellaPhantoms (PHI)LW214812-262025377020365.71%1640119.14000624000000019.14203915000.6000000000
3Jacob PerreaultPhantoms (PHI)RW217512-2760432855233312.73%940119.13011724000000019.1322396000.6000000000
4Peter AbbandonatoPhantoms (PHI)C215510-250024488937605.62%2941819.9300000000000019.931524027000.4800000100
5Mitchell McLainPhantoms (PHI)C21369-461087032345326355.66%2146822.330223220001150022.332753812000.3800437000
6Tyler BolandPhantoms (PHI)C21189-180017366517361.54%1131014.79000001013210014.792202923000.5800000001
7Dominik ShinePhantoms (PHI)RW21268-434028226311383.17%1336617.441341226000000017.4412208000.4400000000
8Chad NychukPhantoms (PHI)D21246-33001829315126.45%3944321.10101516000118000.00%01331000.2700000000
9Devante StephensPhantoms (PHI)D21246-331001931239158.70%3643820.87000325011022000.00%01528000.2700000000
10Gabriel FortierPhantoms (PHI)LW21156-422014365725381.75%1738818.4812314260000170118.4816448000.3100000000
11Wyatte WyliePhantoms (PHI)D21246-3119515151871211.11%2843020.49112525011021000.00%01914000.2800010000
12Evan WeingerPhantoms (PHI)RW21134-600941061810.00%01607.620000000000007.62743000.5000000000
13Jimmy OlignyPhantoms (PHI)D21134-4212101421191185.26%3452625.07000424000013000.00%02319000.1500101000
14Tuukka TieksolaPhantoms (PHI)RW21224-20201716215169.52%629213.9200000000050013.9214117000.2700000000
15Mitchell StephensPhantoms (PHI)C21112-6555715486.67%2954.530002300000004.535533000.4200001000
16Tyler MaddenPhantoms (PHI)C211121004522250.00%1301.460000000000001.46402001.3100000000
17Gabriel CarlssonFlyersD6011-10208814170.00%2214424.090002800003000.00%065000.1400000000
18Madison BoweyPhantoms (PHI)D21011-1920201512890.00%1929714.180000000000000.00%01211000.0700000000
19Hunter SkinnerPhantoms (PHI)D15000-194014157430.00%724316.230000000000000.00%01011000.00%00000000
Team Total or Average3784075115-4682251153534566812484285.87%323626116.5659146825212351591147.34%1092386246000.37007511111
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1J-F BerubePhantoms (PHI)2112000.8456.38126020134865502010.00%0210000
Team Total or Average2112000.8456.38126020134865502010.0000210000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Clause Trade Block Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Brayden BurkePhantoms (PHI)LW261997-01-01No180 Lbs5 ft11NoNoNo2Pro & Farm750,000$558,594$750,000$558,594$0$0$No750,000$Link / NHL Link
Brent Gates Jr.Phantoms (PHI)RW251997-08-12Yes198 Lbs6 ft2NoNoNo3Pro & Farm787,500$586,523$787,500$586,523$0$0$No787,500$787,500$Link / NHL Link
Chad NychukPhantoms (PHI)D222001-03-06No194 Lbs6 ft1NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Colt ConradPhantoms (PHI)C261997-04-27Yes183 Lbs5 ft10NoNoNo3Pro & Farm840,000$625,625$840,000$625,625$0$0$No840,000$840,000$Link / NHL Link
Devante StephensPhantoms (PHI)D261997-01-02Yes185 Lbs6 ft3NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Dominik ShinePhantoms (PHI)RW301993-04-18No180 Lbs5 ft11NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Evan WeingerPhantoms (PHI)RW261997-04-18No193 Lbs6 ft0NoNoNo3Pro & Farm840,000$625,625$840,000$625,625$0$0$No840,000$840,000$Link / NHL Link
Gabriel FortierPhantoms (PHI)LW232000-02-06Yes173 Lbs5 ft10NoNoNo1Pro & Farm925,000$688,932$925,000$688,932$0$0$NoLink / NHL Link
Hunter SkinnerPhantoms (PHI)D222001-04-29Yes182 Lbs6 ft2NoNoNo2Farm Only925,000$688,932$925,000$688,932$0$0$No925,000$Link / NHL Link
J-F BerubePhantoms (PHI)G311991-07-13No176 Lbs6 ft1NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Jacob PerreaultPhantoms (PHI)RW212002-04-15Yes192 Lbs5 ft11NoNoNo2Farm Only925,000$688,932$925,000$688,932$0$0$No925,000$Link / NHL Link
Jimmy OlignyPhantoms (PHI)D301993-04-30No195 Lbs5 ft10NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Joseph GambardellaPhantoms (PHI)LW291993-12-01No200 Lbs5 ft10NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Jussi OlkinuoraPhantoms (PHI)G321990-11-04Yes205 Lbs6 ft3NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Madison BoweyPhantoms (PHI)D281995-04-22No200 Lbs6 ft2NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Mitchell McLainPhantoms (PHI)C291993-12-09No196 Lbs6 ft0NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Mitchell StephensPhantoms (PHI)C261997-02-05No193 Lbs6 ft0NoNoNo2Pro & Farm971,250$723,379$971,250$723,379$0$0$No971,250$Link / NHL Link
Ole Bjorgvik-HolmPhantoms (PHI)D212002-05-23Yes195 Lbs6 ft3NoNoNo2Pro & Farm825,000$614,453$825,000$614,453$0$0$No825,000$Link / NHL Link
Peter AbbandonatoPhantoms (PHI)C251998-03-25Yes195 Lbs5 ft11NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Ryan BednardPhantoms (PHI)G261997-03-31No205 Lbs6 ft5NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Sam AnasPhantoms (PHI)C301993-06-01No162 Lbs5 ft9NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Tuukka TieksolaPhantoms (PHI)RW222001-06-22Yes146 Lbs5 ft10NoNoNo1Pro & Farm823,333$613,212$823,333$613,212$0$0$NoLink / NHL Link
Tyler BolandPhantoms (PHI)C261996-09-12Yes194 Lbs6 ft0NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Tyler MaddenPhantoms (PHI)C231999-11-09Yes170 Lbs5 ft11NoNoNo1Pro & Farm925,000$688,932$925,000$688,932$0$0$NoLink / NHL Link
Wyatte WyliePhantoms (PHI)D231999-11-02Yes190 Lbs6 ft0NoNoNo1Pro & Farm925,000$688,932$925,000$688,932$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2525.92187 Lbs6 ft01.44808,483$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Gabriel FortierMitchell McLainDominik Shine30122
2Joseph GambardellaSam AnasJacob Perreault30122
3Peter AbbandonatoTyler BolandTuukka Tieksola20122
4Mitchell McLainPeter AbbandonatoEvan Weinger20122
5 vs 5 Defence
Line #DefenceDefenceTime %PHYDFOF
1Hunter SkinnerJimmy Oligny30122
2Devante StephensWyatte Wylie30122
3Madison BoweyChad Nychuk20122
4Chad NychukJimmy Oligny20122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Gabriel FortierMitchell McLainDominik Shine50122
2Joseph GambardellaSam AnasJacob Perreault50122
Power Play Defence
Line #DefenceDefenceTime %PHYDFOF
1Chad NychukJimmy Oligny50122
2Devante StephensWyatte Wylie50122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Mitchell McLainGabriel Fortier50122
2Sam AnasTyler Boland50122
Penalty Kill 4 Players Defence
Line #DefenceDefenceTime %PHYDFOF
1Chad NychukJimmy Oligny50122
2Devante StephensWyatte Wylie50122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenceDefenceTime %PHYDFOF
1Mitchell McLain50122Chad NychukJimmy Oligny50122
2Gabriel Fortier50122Devante StephensWyatte Wylie50122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Mitchell McLainGabriel Fortier50122
2Sam AnasTyler Boland50122
4 vs 4 Defence
Line #DefenceDefenceTime %PHYDFOF
1Madison BoweyJimmy Oligny50122
2Devante StephensWyatte Wylie50122
Last Minute Offensive
Left WingCenterRight WingDefenceDefence
Gabriel FortierMitchell McLainDominik ShineDevante StephensJimmy Oligny
Last Minute Defensive
Left WingCenterRight WingDefenceDefence
Gabriel FortierMitchell McLainDominik ShineDevante StephensJimmy Oligny
Extra Forwards
Normal PowerPlayPenalty Kill
Mitchell Stephens, Tyler Madden, Tuukka TieksolaMitchell Stephens, Tyler MaddenTuukka Tieksola
Extra Defencemen
Normal PowerPlayPenalty Kill
Madison Bowey, Chad Nychuk, Devante StephensMadison BoweyChad Nychuk, Devante Stephens
Penalty Shots
Mitchell McLain, Gabriel Fortier, Sam Anas, Tyler Boland, Peter Abbandonato
Goalie
#1 : J-F Berube, #2 : Ryan Bednard
Custom OT Lines Forwards
Mitchell McLain, Gabriel Fortier, Sam Anas, Tyler Boland, Peter Abbandonato, Mitchell Stephens, Mitchell Stephens, Dominik Shine, Joseph Gambardella, Tyler Madden, Jacob Perreault
Custom OT Lines Defencemen
Chad Nychuk, Jimmy Oligny, Devante Stephens, Wyatte Wylie, Madison Bowey


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans20200000412-81010000027-51010000025-300.00048120020118169259203218180292829600.00%4175.00%016837145.28%19739150.38%15232946.20%380222541170339162
2Barracuda1010000025-3000000000001010000025-300.0002460020118130259203218137181713100.00%10100.00%116837145.28%19739150.38%15232946.20%380222541170339162
3Canucks1010000015-41010000015-40000000000000.000123002011814125920321813410920400.00%20100.00%016837145.28%19739150.38%15232946.20%380222541170339162
4Condors1010000017-61010000017-60000000000000.0001230020118123259203218144172413300.00%2150.00%016837145.28%19739150.38%15232946.20%380222541170339162
5Gulls20200000311-81010000025-31010000016-500.0003580020118170259203218166333436200.00%20100.00%016837145.28%19739150.38%15232946.20%380222541170339162
6Islanders20200000421-170000000000020200000421-1700.0004610002011815925920321811033735232150.00%000.00%016837145.28%19739150.38%15232946.20%380222541170339162
7Monsters20200000315-121010000026-41010000019-800.0003580020118168259203218186312141100.00%3166.67%016837145.28%19739150.38%15232946.20%380222541170339162
8Reign20101000910-11010000035-21000100065120.500918271020118178259203218186184392150.00%20100.00%016837145.28%19739150.38%15232946.20%380222541170339162
9Senators1010000023-1000000000001010000023-100.0002460020118136259203218143241923000.00%2150.00%016837145.28%19739150.38%15232946.20%380222541170339162
10Silver Knights20200000413-91010000037-41010000016-500.000481200201181652592032181783914383266.67%20100.00%016837145.28%19739150.38%15232946.20%380222541170339162
11Stars1010000016-5000000000001010000016-500.000123002011813325920321813717217100.00%110.00%016837145.28%19739150.38%15232946.20%380222541170339162
12Wild1010000029-71010000029-70000000000000.0002350020118123259203218146101412100.00%20100.00%016837145.28%19739150.38%15232946.20%380222541170339162
13Wolf Pack1010000036-31010000036-30000000000000.000369002011813325920321814512017000.00%000.00%016837145.28%19739150.38%15232946.20%380222541170339162
14Wolves20200000112-111010000004-41010000018-700.0001230020118153259203218181286324125.00%3233.33%016837145.28%19739150.38%15232946.20%380222541170339162
Total210200100040135-9510010000001961-4211010010002174-5320.048407511510201181681259203218186632322735330516.67%26773.08%116837145.28%19739150.38%15232946.20%380222541170339162
_Since Last GM Reset210200100040135-9510010000001961-4211010010002174-5320.048407511510201181681259203218186632322735330516.67%26773.08%116837145.28%19739150.38%15232946.20%380222541170339162
_Vs Conference10010000001769-5240400000723-16606000001046-3600.00017314800201181318259203218143816110916513215.38%12558.33%016837145.28%19739150.38%15232946.20%380222541170339162
_Vs Division707000001154-4330300000516-1140400000638-3200.000111930002011812132592032181315108621137228.57%6350.00%016837145.28%19739150.38%15232946.20%380222541170339162

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
212L6407511568186632322735310
All Games
GPWLOTWOTL SOWSOLGFGA
21020100040135
Home Games
GPWLOTWOTL SOWSOLGFGA
1001000001961
Visitor Games
GPWLOTWOTL SOWSOLGFGA
1101010002174
Last 10 Games
WLOTWOTL SOWSOL
190000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
30516.67%26773.08%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
2592032181201181
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
16837145.28%19739150.38%15232946.20%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
380222541170339162


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visiting Team Score Home Team Score ST OT SO RI Link
3 - 2023-10-1211Phantoms1Monsters9ALBoxScore
5 - 2023-10-1419Phantoms2Senators3ALBoxScore
8 - 2023-10-1742Canucks5Phantoms1BLBoxScore
10 - 2023-10-1954Condors7Phantoms1BLBoxScore
12 - 2023-10-2172Phantoms1Stars6ALBoxScore
15 - 2023-10-2498Phantoms1Silver Knights6ALBoxScore
17 - 2023-10-26104Wild9Phantoms2BLBoxScore
19 - 2023-10-28117Gulls5Phantoms2BLBoxScore
21 - 2023-10-30131Wolves4Phantoms0BLBoxScore
23 - 2023-11-01141Americans7Phantoms2BLBoxScore
25 - 2023-11-03157Phantoms2Americans5ALBoxScore
26 - 2023-11-04164Reign5Phantoms3BLBoxScore
29 - 2023-11-07189Phantoms2Barracuda5ALBoxScore
32 - 2023-11-10208Phantoms1Gulls6ALBoxScore
33 - 2023-11-11221Phantoms6Reign5AWXBoxScore
37 - 2023-11-15238Phantoms1Wolves8ALBoxScore
40 - 2023-11-18255Silver Knights7Phantoms3BLBoxScore
41 - 2023-11-19268Monsters6Phantoms2BLBoxScore
44 - 2023-11-22286Phantoms2Islanders11ALBoxScore
46 - 2023-11-24294Wolf Pack6Phantoms3BLBoxScore
47 - 2023-11-25312Phantoms2Islanders10ALBoxScore
50 - 2023-11-28328Wolves-Phantoms-
52 - 2023-11-30344Comets-Phantoms-
54 - 2023-12-02363Phantoms-Penguins-
56 - 2023-12-04374Penguins-Phantoms-
59 - 2023-12-07400Phantoms-Roadrunners-
61 - 2023-12-09417Phantoms-Eagles-
64 - 2023-12-12435Phantoms-Admirals-
66 - 2023-12-14448Bears-Phantoms-
68 - 2023-12-16466Griffins-Phantoms-
71 - 2023-12-19487Phantoms-Comets-
73 - 2023-12-21502Admirals-Phantoms-
74 - 2023-12-22510Phantoms-Griffins-
80 - 2023-12-28543Phantoms-Canucks-
81 - 2023-12-29554Phantoms-Firebirds-
83 - 2023-12-31570Phantoms-Wranglers-
85 - 2024-01-02583Phantoms-Condors-
87 - 2024-01-04592Monsters-Phantoms-
89 - 2024-01-06605Wranglers-Phantoms-
91 - 2024-01-08622Penguins-Phantoms-
93 - 2024-01-10635Rocket-Phantoms-
95 - 2024-01-12652Phantoms-Wild-
96 - 2024-01-13657Phantoms-Moose-
98 - 2024-01-15679Phantoms-Thunderbirds-
101 - 2024-01-18694Stars-Phantoms-
103 - 2024-01-20707Eagles-Phantoms-
104 - 2024-01-21718Senators-Phantoms-
106 - 2024-01-23732Crunch-Phantoms-
108 - 2024-01-25747Phantoms-Griffins-
110 - 2024-01-27759Bruins-Phantoms-
120 - 2024-02-06786Phantoms-Checkers-
122 - 2024-02-08797Moose-Phantoms-
124 - 2024-02-10814Firebirds-Phantoms-
126 - 2024-02-12821Roadrunners-Phantoms-
129 - 2024-02-15843Phantoms-Marlies-
131 - 2024-02-17859Phantoms-Comets-
135 - 2024-02-21885Phantoms-IceHogs-
138 - 2024-02-24905Wolf Pack-Phantoms-
139 - 2024-02-25917Phantoms-Penguins-
141 - 2024-02-27930Crunch-Phantoms-
144 - 2024-03-01954Phantoms-Bears-
145 - 2024-03-02962Senators-Phantoms-
147 - 2024-03-04977Thunderbirds-Phantoms-
150 - 2024-03-07996Phantoms-Checkers-
Trade Deadline --- Trades cannot be done after this date
152 - 2024-03-091016Phantoms-Crunch-
155 - 2024-03-121035Barracuda-Phantoms-
157 - 2024-03-141050Marlies-Phantoms-
159 - 2024-03-161065Phantoms-Bruins-
162 - 2024-03-191086Marlies-Phantoms-
164 - 2024-03-211099Phantoms-Wolves-
166 - 2024-03-231114Bruins-Phantoms-
167 - 2024-03-241129Checkers-Phantoms-
169 - 2024-03-261137Phantoms-Wolf Pack-
171 - 2024-03-281152Phantoms-Rocket-
173 - 2024-03-301174IceHogs-Phantoms-
175 - 2024-04-011183Islanders-Phantoms-
179 - 2024-04-051211Phantoms-Americans-
180 - 2024-04-061222Phantoms-Monsters-
183 - 2024-04-091242Phantoms-Rocket-
185 - 2024-04-111257Phantoms-Wolf Pack-
187 - 2024-04-131274Comets-Phantoms-
190 - 2024-04-161299Bears-Phantoms-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity35001500
Ticket Price105
Attendance35,00015,000
Attendance PCT100.00%100.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
31 5000 - 100.00% 21,675$216,750$5000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
5,206,924$ 20,212,084$ 20,212,084$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
105,271$ 5,206,924$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
671,925$ 143 105,271$ 15,053,753$




Phantoms

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Joel Kiviranta82144100244871812110737838.10%54190723.2717122949113142314235.37%232.5602
2Ryan McLeod82731392129607612127426.64%39178021.721025353231316125058.97%62.3802
3Mitchell Stephens15066102168164531509629522.37%31180912.06711183622475257.34%31.8601
4Logan Stanley4684561409023629121339.44%92120526.21761328437111110.00%122.3200
5Maksim Sushko1636375138-94516810729121.65%29268116.4576132122433135.12%21.0300

Phantoms

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Laurent Brossoit75421150.8244.5841442103161797985700.5717
2Carter Hart1211010.8683.487250142319170100.6673
3Harri Sateri55104050.8246.01331712033218871060201.0008
4Pat Nagle2761740.8594.84162500131929584110.0002
5J-F Berube2112000.8456.38126020134865502010.0000

Phantoms

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
2021824630013025164298741261300002270190804120170130024623979951679213080110207163145226607587267792149798162211681665935.54%2174678.80%25640115055.65%657120354.61%838159152.67%1703110319926041237621
202282125702821283465-1824182300811160226-664143402010123239-116412834927751011080894270792284991927281797329716081854122.16%1454171.72%4755146151.68%650132249.17%690130352.95%1771108618016741373686
2023210200100040135-9510010000001961-4211010010002174-532407511510201181681259203218186632322735330516.67%26773.08%116837145.28%19739150.38%15232946.20%380222541170339162
Total Regular Season185581070411238391029-19092344600813449477-2893246104310390552-162142839135921982111302982601505654118118101863807583220942146312938110527.56%3889475.77%301563298252.41%1504291651.58%1680322352.13%385424134335144929501470
Playoff
2021514000002540-1521100000812-4303000001728-1122536610001933128051443319198978212325.00%11554.55%0448055.00%418747.13%629962.63%10770120367136
Total Playoff514000002540-1521100000812-4303000001728-1122536610001933128051443319198978212325.00%11554.55%0448055.00%418747.13%629962.63%10770120367136

Phantoms

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Wade Allison541115307131723.53%811422.82123100001042.11%02.6300
2Logan Stanley5471172591330.77%129919.9010130000000.00%02.2100
3Joel Kiviranta5641032461833.33%811322.73112100000050.00%11.7600
4Mitchell Stephens5347-89771618.75%29519.15000300000057.14%01.4600
5Ryan McLeod542640151040.00%27214.51011100000052.86%01.6500

Phantoms

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA