´╗┐

Checkers
GP: 21 | W: 10 | L: 7 | OTL: 4 | P: 24
GF: 77 | GA: 62 | PP%: 18.92% | PK%: 76.00%
GM : Dylan Jacob-Smith | Morale : 50 | Team Overall : 66
Next Games #329 vs Marlies
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Moose
10-8-2, 22pts
3
FINAL
5 Checkers
10-7-4, 24pts
Team Stats
W1StreakW2
6-3-1Home Record7-1-2
4-5-1Away Record3-6-2
6-4-0Last 10 Games5-3-2
3.253.67
3.002.95
35.48%18.92%
75.76%76.00%
Checkers
10-7-4, 24pts
5
FINAL
3 Senators
4-11-2, 10pts
Team Stats
W2StreakL1
7-1-2Home Record4-7-2
3-6-2Away Record0-4-0
5-3-2Last 10 Games3-7-0
3.672.71
2.954.94
18.92%27.59%
76.00%70.00%
Checkers
10-7-4, 24pts
2023-11-28
Marlies
11-7-1, 23pts
Team Stats
W2StreakW1
7-1-26-3-0
3-6-25-4-1
5-3-2Last 10 Games6-3-1
3.673.63
2.953.37
18.92%34.62%
76.00%73.08%
Checkers
10-7-4, 24pts
2023-11-30
Rocket
9-10-2, 20pts
Team Stats
W2StreakW2
7-1-23-6-2
3-6-26-4-0
5-3-2Last 10 Games4-5-1
3.672.05
2.952.43
18.92%26.67%
76.00%86.96%
Islanders
15-5-0, 30pts
2023-12-02
Checkers
10-7-4, 24pts
Team Stats
W1StreakW2
11-0-07-1-2
4-5-03-6-2
7-3-0Last 10 Games5-3-2
5.153.67
3.752.95
21.43%18.92%
79.31%76.00%
Mike ReillyGoals
Mike Reilly
12
Brad HuntAssists
Brad Hunt
19
Brad HuntPoints
Brad Hunt
28
Brad HuntPlus/Minus
Brad Hunt
20
Alex LyonWins
Alex Lyon
8
Alex LyonSave Percentage
Alex Lyon
0.912

Team Stats

77
3.67 GFG
Shots For
768
36.57 Avg

18.9%
7 GF

38.0%
Goals Against
62
2.95 GAA
Shots Against
693
33.00 Avg

76.0%
6 GA

35.6%


General ManagerDylan Jacob-Smith
Atlantic Division
Eastern Conference
Mike Reilly
Brad Hunt




Arena Capacity5,000
Attendance5,000
5,000




21
19
40 / 55
Prospects40


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Julien Gauthier0X100.00825198738440695740677170646464050750253840,000$
2Pat Maroon0XX100.008156867484489759406870686565650507503521,000,000$
3Jakub Lauko (R)0XX100.00835394808439555840697155656565050740231925,000$
4Will Cuylle (R)0X100.00546581555481944336586546542540050630212828,333$
5Xavier Simoneau (R)0X100.00556179555573844265616342532540050620221750,000$
6Byron Froese0X100.00535881555565754365606444542540050610322750,000$
7Tim Gettinger (R)0XX100.00535382565658614436606447542540050610253787,500$
8Emilio Pettersen (R)0X100.00536083555569804365596448542540050610231925,000$
9Jamieson Rees (R)0X100.00556180555472834265606442532540050610222925,000$
10Greg McKegg0XX100.00546381525378903865576440512540050600311762,500$
11Jonathan Gruden (R)0X100.00545781555563734236586541532540050600231925,000$
12Jayce Hawryluk (R)0XX100.00554380535758454036586441522540050590271750,000$
13Mike Reilly (C)0X100.007451966980655566406768556767670507502943,480,000$
14Nathan Beaulieu0X100.00705390708051625940676866636363050740302824,500$
15Brad Hunt (A)0X100.00685296688047566140696963656565050730341772,500$
16Brian Lashoff0X100.00526483515279913736566336502540050590321750,000$
17Cameron Gaunce0X100.00546181525372833836576340512540050590331750,000$
18Kim Nousiainen (R)0X100.00514985515358503736566335502540050560222859,167$
Scratches
1Brad Lambert (R)0XX100.00533782525758453765566429512540050560194925,000$
TEAM AVERAGE100.0061558560636271474661664856384805064
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Malcolm Subban100.0073707777767574767774762555050780291867,000$
2Cal Petersen100.00716553707974717972507533600507502815,000,000$
Scratches
TEAM AVERAGE100.007268657478757378756276295805077
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brad HuntCheckers (FLA)D21919282020273377404511.69%2548623.16022933011014110.00%03430001.1500000222
2Mike ReillyCheckers (FLA)D211214261800523783393514.46%2649523.60011433011015100.00%02315001.0500000323
3Jakub LaukoCheckers (FLA)LW/RW21101222900312366365915.15%1033716.051238320000171016.0528659011.3100000201
4Vitali KravtsovPanthersLW/RW191012221300483476296013.16%2136119.041237301011163019.04355222001.2200000122
5Philip BrobergPanthersD1971421-20032578943377.87%4939520.792021129000118210.00%03033001.0611000021
6Cole SmithPanthersLW/RW1981321-340563877317410.39%1741822.001014290000120022.00324520101.0000000003
7Emilio PettersenCheckers (FLA)C21381115202924369158.33%1038018.13011032000000018.13257126000.5800000000
8Xavier SimoneauCheckers (FLA)C2101010128010129430.00%430814.71022032000000014.7128822000.6500000000
9Jamieson ReesCheckers (FLA)C21189-54028293919422.56%1133415.9200000000000015.922051714000.5400000000
10Will CuylleCheckers (FLA)LW21527-5141024285820388.62%1235016.70000000000160116.7010298000.4000011000
11Byron FroeseCheckers (FLA)C21145-5401213193125.26%12009.540000000003009.5413182000.5000000000
12Jayce HawrylukCheckers (FLA)LW/RW21235-5802314407215.00%633415.9400000000000015.9412134000.3000000000
13Pat MaroonCheckers (FLA)LW/RW21340007711489.09%74221.2801112000020021.28771001.8800000011
14Tim GettingerCheckers (FLA)LW/RW2104415402592911160.00%838018.11011332000000018.1117109000.2100000000
15Julien GauthierCheckers (FLA)RW2303200231261025.00%03115.681011200002100.00%371101.9100000010
16Nathan BeaulieuCheckers (FLA)D22132004985425.00%14723.841012200001000.00%013001.2600000100
17Jonathan GrudenCheckers (FLA)LW21123-5559812358.33%21959.300000000000010.00%471000.3100100000
18Brian LashoffCheckers (FLA)D21011-27591615580.00%1833115.790000000000000.00%069000.0600010000
19Cameron GaunceCheckers (FLA)D21011-3402675740.00%1243220.59000031000019000.00%0210000.0500000000
20Greg McKeggCheckers (FLA)C/LW211017006321250.00%2683.260000100000000.00%210000.2900000000
21Kim NousiainenCheckers (FLA)D21101-200101057520.00%833215.840000000001100.00%094000.0600000000
Team Total or Average3787713120876662047041476832950310.03%250626516.587121950325123214310448.98%1031380203210.661112191013
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Alex LyonPanthers198740.9122.9511392056634379100.00%0190300
2Malcolm SubbanCheckers (FLA)22000.8983.001200065931100.00%020000
Team Total or Average2110740.9112.9612592062693410200.0000210300


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Clause Trade Block Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Brad HuntCheckers (FLA)D341988-08-24No185 Lbs5 ft9NoNoNo1Pro & Farm772,500$575,352$772,500$575,352$0$0$NoLink / NHL Link
Brad LambertCheckers (FLA)C/RW192003-12-19Yes183 Lbs6 ft0NoNoNo4Farm Only925,000$688,932$925,000$688,932$0$0$No925,000$925,000$925,000$NHL Link
Brian LashoffCheckers (FLA)D321990-07-16No215 Lbs6 ft3NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Byron FroeseCheckers (FLA)C321991-03-12No202 Lbs6 ft1NoNoNo2Pro & Farm750,000$558,594$750,000$558,594$0$0$No750,000$Link / NHL Link
Cal Petersen (1 Way Contract)Checkers (FLA)G281994-10-19No180 Lbs6 ft1NoNoNo1Pro & Farm5,000,000$3,723,958$5,000,000$3,723,958$3,875,000$2,886,068$NoLink / NHL Link
Cameron GaunceCheckers (FLA)D331990-03-19No194 Lbs6 ft1NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Emilio PettersenCheckers (FLA)C232000-04-03Yes170 Lbs5 ft10NoNoNo1Pro & Farm925,000$688,932$925,000$688,932$0$0$NoLink / NHL Link
Greg McKeggCheckers (FLA)C/LW311992-06-17No194 Lbs6 ft0NoNoNo1Pro & Farm762,500$567,904$762,500$567,904$0$0$NoLink / NHL Link
Jakub LaukoCheckers (FLA)LW/RW232000-03-28Yes184 Lbs6 ft0NoNoNo1Farm Only925,000$688,932$925,000$688,932$0$0$NoLink / NHL Link
Jamieson ReesCheckers (FLA)C222001-02-26Yes172 Lbs5 ft11NoNoNo2Farm Only925,000$688,932$925,000$688,932$0$0$No925,000$Link / NHL Link
Jayce HawrylukCheckers (FLA)LW/RW271996-01-01Yes189 Lbs5 ft11NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Jonathan GrudenCheckers (FLA)LW232000-05-04Yes172 Lbs6 ft0NoNoNo1Pro & Farm925,000$688,932$925,000$688,932$0$0$NoLink / NHL Link
Julien GauthierCheckers (FLA)RW251997-10-15No225 Lbs6 ft4NoNoNo3Pro & Farm840,000$625,625$840,000$625,625$0$0$No840,000$840,000$Link / NHL Link
Kim NousiainenCheckers (FLA)D222000-11-14Yes181 Lbs5 ft8NoNoNo2Pro & Farm859,167$639,900$859,167$639,900$0$0$No859,167$Link / NHL Link
Malcolm SubbanCheckers (FLA)G291993-12-21No217 Lbs6 ft2NoNoNo1Pro & Farm867,000$645,734$867,000$645,734$0$0$NoLink / NHL Link
Mike Reilly (1 Way Contract)Checkers (FLA)D291993-07-13No190 Lbs6 ft1NoNoNo4Pro & Farm3,480,000$2,591,875$3,480,000$2,591,875$2,355,000$1,753,984$No3,480,000$3,480,000$3,480,000$Link / NHL Link
Nathan BeaulieuCheckers (FLA)D301992-12-05No194 Lbs6 ft2NoNoNo2Pro & Farm824,500$614,081$824,500$614,081$0$0$No824,500$Link / NHL Link
Pat MaroonCheckers (FLA)LW/RW351988-04-23No234 Lbs6 ft3NoNoNo2Pro & Farm1,000,000$744,792$1,000,000$744,792$0$0$No1,000,000$Link / NHL Link
Tim GettingerCheckers (FLA)LW/RW251998-04-14Yes218 Lbs6 ft6NoNoNo3Pro & Farm787,500$586,523$787,500$586,523$0$0$No787,500$787,500$Link / NHL Link
Will CuylleCheckers (FLA)LW212002-02-05Yes204 Lbs6 ft3NoNoNo2Pro & Farm828,333$616,936$828,333$616,936$0$0$No828,333$Link / NHL Link
Xavier SimoneauCheckers (FLA)C222001-05-19Yes183 Lbs5 ft6NoNoNo1Pro & Farm750,000$558,594$750,000$558,594$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2126.90195 Lbs6 ft01.761,161,738$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Pat MaroonXavier SimoneauJulien Gauthier30122
2Jakub LaukoEmilio PettersenTim Gettinger30122
3Will CuylleJamieson ReesJayce Hawryluk20122
4Jonathan GrudenByron FroesePat Maroon20122
5 vs 5 Defence
Line #DefenceDefenceTime %PHYDFOF
1Mike ReillyNathan Beaulieu30122
2Brad HuntCameron Gaunce30122
3Brian LashoffKim Nousiainen20122
4Mike ReillyNathan Beaulieu20122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Pat MaroonXavier SimoneauJulien Gauthier50122
2Jakub LaukoEmilio PettersenTim Gettinger50122
Power Play Defence
Line #DefenceDefenceTime %PHYDFOF
1Mike ReillyNathan Beaulieu50122
2Brad HuntCameron Gaunce50122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Pat MaroonJulien Gauthier50122
2Jakub LaukoWill Cuylle50122
Penalty Kill 4 Players Defence
Line #DefenceDefenceTime %PHYDFOF
1Mike ReillyNathan Beaulieu50122
2Brad HuntCameron Gaunce50122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenceDefenceTime %PHYDFOF
1Pat Maroon50122Mike ReillyNathan Beaulieu50122
2Julien Gauthier50122Brad HuntCameron Gaunce50122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Pat MaroonJulien Gauthier50122
2Jakub LaukoWill Cuylle50122
4 vs 4 Defence
Line #DefenceDefenceTime %PHYDFOF
1Mike ReillyNathan Beaulieu50122
2Brad HuntCameron Gaunce50122
Last Minute Offensive
Left WingCenterRight WingDefenceDefence
Pat MaroonXavier SimoneauJulien GauthierMike ReillyNathan Beaulieu
Last Minute Defensive
Left WingCenterRight WingDefenceDefence
Pat MaroonXavier SimoneauJulien GauthierMike ReillyNathan Beaulieu
Extra Forwards
Normal PowerPlayPenalty Kill
Greg McKegg, Jamieson Rees, Byron FroeseGreg McKegg, Jamieson ReesByron Froese
Extra Defencemen
Normal PowerPlayPenalty Kill
Brian Lashoff, Kim Nousiainen, Brad HuntBrian LashoffKim Nousiainen, Brad Hunt
Penalty Shots
Pat Maroon, Julien Gauthier, Jakub Lauko, Will Cuylle, Xavier Simoneau
Goalie
#1 : Malcolm Subban, #2 : Cal Petersen
Custom OT Lines Forwards
Pat Maroon, Julien Gauthier, Jakub Lauko, Will Cuylle, Xavier Simoneau, Tim Gettinger, Tim Gettinger, Emilio Pettersen, Jamieson Rees, Byron Froese, Jonathan Gruden
Custom OT Lines Defencemen
Mike Reilly, Nathan Beaulieu, Brad Hunt, Cameron Gaunce, Brian Lashoff


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracuda21100000743110000005141010000023-120.500710170027252506728224024607223247300.00%110.00%017439044.62%18336650.00%14827154.61%475305439169346174
2Bears1010000013-2000000000001010000013-200.0001230027252504128224024603514220100.00%110.00%117439044.62%18336650.00%14827154.61%475305439169346174
3Bruins210001007611000010012-11100000064230.75079160027252507728224024606116448400.00%30100.00%017439044.62%18336650.00%14827154.61%475305439169346174
4Canucks1010000026-41010000026-40000000000000.0002350027252504628224024603810234400.00%110.00%017439044.62%18336650.00%14827154.61%475305439169346174
5Comets1000010045-1000000000001000010045-110.500461000272525042282240246029139242150.00%20100.00%017439044.62%18336650.00%14827154.61%475305439169346174
6Condors11000000514110000005140000000000021.0005914002725250322822402460371572211100.00%10100.00%017439044.62%18336650.00%14827154.61%475305439169346174
7Firebirds11000000312110000003120000000000021.000369002725250342822402460321161711100.00%30100.00%017439044.62%18336650.00%14827154.61%475305439169346174
8Griffins1010000034-1000000000001010000034-100.0003580027252503528224024604115627200.00%3166.67%017439044.62%18336650.00%14827154.61%475305439169346174
9Gulls1010000024-2000000000001010000024-200.0002350027252504128224024604219019200.00%000.00%017439044.62%18336650.00%14827154.61%475305439169346174
10IceHogs21100000752110000005141010000024-220.50071118002725250602822402460511810416116.67%5180.00%017439044.62%18336650.00%14827154.61%475305439169346174
11Marlies11000000615110000006150000000000021.000612180027252503528224024602812229200.00%10100.00%017439044.62%18336650.00%14827154.61%475305439169346174
12Monsters11000000523110000005230000000000021.000510150027252504028224024603311218000.00%10100.00%017439044.62%18336650.00%14827154.61%475305439169346174
13Moose21000100651110000005321000010012-130.7506111700272525074282240246059206432150.00%3166.67%017439044.62%18336650.00%14827154.61%475305439169346174
14Reign11000000826000000000001100000082621.000815230027252503728224024602991018000.00%000.00%017439044.62%18336650.00%14827154.61%475305439169346174
15Senators11000000532000000000001100000053221.000581300272525046282240246028130242150.00%000.00%017439044.62%18336650.00%14827154.61%475305439169346174
16Wild1010000025-3000000000001010000025-300.00024600272525032282240246040160223133.33%000.00%017439044.62%18336650.00%14827154.61%475305439169346174
17Wolves1000010045-11000010045-10000000000010.50047110027252502928224024603815017200.00%000.00%017439044.62%18336650.00%14827154.61%475305439169346174
Total21107004007762151071002004123181136002003639-3240.5717713120800272525076828224024606932506847037718.92%25676.00%117439044.62%18336650.00%14827154.61%475305439169346174
_Since Last GM Reset21107004007762151071002004123181136002003639-3240.5717713120800272525076828224024606932506847037718.92%25676.00%117439044.62%18336650.00%14827154.61%475305439169346174
_Vs Conference942003003529642000200161065220010019190110.61135599400272525034528224024602931092520715213.33%11281.82%117439044.62%18336650.00%14827154.61%475305439169346174
_Vs Division531001002114721000100734321000001411370.7002134550027252501932822402460158561212810110.00%7185.71%017439044.62%18336650.00%14827154.61%475305439169346174

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2124W2771312087686932506847000
All Games
GPWLOTWOTL SOWSOLGFGA
2110704007762
Home Games
GPWLOTWOTL SOWSOLGFGA
107102004123
Visitor Games
GPWLOTWOTL SOWSOLGFGA
113602003639
Last 10 Games
WLOTWOTL SOWSOL
530200
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
37718.92%25676.00%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
28224024602725250
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
17439044.62%18336650.00%14827154.61%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
475305439169346174


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visiting Team Score Home Team Score ST OT SO RI Link
3 - 2023-10-1214Checkers2Wild5ALBoxScore
5 - 2023-10-1420Checkers1Moose2ALXBoxScore
7 - 2023-10-1636Checkers4Comets5ALXBoxScore
10 - 2023-10-1952Marlies1Checkers6BWBoxScore
12 - 2023-10-2168Canucks6Checkers2BLBoxScore
15 - 2023-10-2489Barracuda1Checkers5BWBoxScore
19 - 2023-10-28118Firebirds1Checkers3BWBoxScore
21 - 2023-10-30130Checkers6Bruins4AWBoxScore
24 - 2023-11-02147Checkers3Griffins4ALBoxScore
26 - 2023-11-04168Checkers2IceHogs4ALBoxScore
28 - 2023-11-06176Monsters2Checkers5BWBoxScore
30 - 2023-11-08191Checkers1Bears3ALBoxScore
32 - 2023-11-10205Wolves5Checkers4BLXBoxScore
34 - 2023-11-12222IceHogs1Checkers5BWBoxScore
36 - 2023-11-14237Checkers2Barracuda3ALBoxScore
38 - 2023-11-16249Checkers8Reign2AWBoxScore
39 - 2023-11-17253Checkers2Gulls4ALBoxScore
42 - 2023-11-20272Condors1Checkers5BWBoxScore
44 - 2023-11-22282Bruins2Checkers1BLXBoxScore
46 - 2023-11-24304Moose3Checkers5BWBoxScore
49 - 2023-11-27323Checkers5Senators3AWBoxScore
50 - 2023-11-28329Checkers-Marlies-
52 - 2023-11-30343Checkers-Rocket-
54 - 2023-12-02359Islanders-Checkers-
58 - 2023-12-06388Stars-Checkers-
60 - 2023-12-08406Penguins-Checkers-
62 - 2023-12-10420Checkers-Monsters-
64 - 2023-12-12437Checkers-Firebirds-
66 - 2023-12-14454Checkers-Canucks-
68 - 2023-12-16473Checkers-Condors-
70 - 2023-12-18483Checkers-Wranglers-
73 - 2023-12-21500Thunderbirds-Checkers-
75 - 2023-12-23515Silver Knights-Checkers-
79 - 2023-12-27530Checkers-Crunch-
81 - 2023-12-29548Wolf Pack-Checkers-
82 - 2023-12-30558Rocket-Checkers-
85 - 2024-01-02581Checkers-Roadrunners-
87 - 2024-01-04599Checkers-Silver Knights-
89 - 2024-01-06606Checkers-Eagles-
92 - 2024-01-09630Checkers-Thunderbirds-
94 - 2024-01-11641Reign-Checkers-
96 - 2024-01-13656Comets-Checkers-
98 - 2024-01-15674Gulls-Checkers-
100 - 2024-01-17689Griffins-Checkers-
102 - 2024-01-19704Wild-Checkers-
105 - 2024-01-22726Checkers-Admirals-
107 - 2024-01-24739Roadrunners-Checkers-
109 - 2024-01-26756Checkers-Penguins-
110 - 2024-01-27769Checkers-Islanders-
120 - 2024-02-06786Phantoms-Checkers-
122 - 2024-02-08795Bears-Checkers-
124 - 2024-02-10809Eagles-Checkers-
128 - 2024-02-14835Checkers-Penguins-
129 - 2024-02-15838Checkers-Americans-
131 - 2024-02-17856Checkers-Crunch-
134 - 2024-02-20876Senators-Checkers-
136 - 2024-02-22889Checkers-Wolves-
138 - 2024-02-24906Bears-Checkers-
141 - 2024-02-27928Americans-Checkers-
143 - 2024-02-29944Rocket-Checkers-
145 - 2024-03-02961Checkers-Griffins-
147 - 2024-03-04976Checkers-Wolf Pack-
148 - 2024-03-05982Checkers-Comets-
150 - 2024-03-07996Phantoms-Checkers-
Trade Deadline --- Trades cannot be done after this date
152 - 2024-03-091013Wranglers-Checkers-
155 - 2024-03-121036Checkers-Stars-
157 - 2024-03-141046Checkers-Wolves-
159 - 2024-03-161063Crunch-Checkers-
164 - 2024-03-211101Admirals-Checkers-
166 - 2024-03-231119Checkers-Wolf Pack-
167 - 2024-03-241129Checkers-Phantoms-
169 - 2024-03-261136Bruins-Checkers-
171 - 2024-03-281151Islanders-Checkers-
173 - 2024-03-301165Griffins-Checkers-
175 - 2024-04-011185Checkers-Marlies-
176 - 2024-04-021190Checkers-Rocket-
178 - 2024-04-041205Checkers-Senators-
180 - 2024-04-061218Checkers-Bruins-
183 - 2024-04-091241Senators-Checkers-
185 - 2024-04-111256Monsters-Checkers-
187 - 2024-04-131273Americans-Checkers-
190 - 2024-04-161297Marlies-Checkers-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity35001500
Ticket Price5025
Attendance35,00015,000
Attendance PCT100.00%100.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
31 5000 - 100.00% 108,375$1,083,750$5000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
4,021,076$ 15,916,500$ 15,916,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
82,898$ 4,021,076$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
3,359,625$ 143 82,898$ 11,854,414$




Checkers

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Kyle Capobianco1389617226814436417416731030.97%169276020.00162642462466600.00%111.9400
2Joachim Blichfeld82354479020834826613.16%25157519.21611172821354143.95%11.0001
3Byron Froese10332427442614010428311.31%33157715.31410142501121155.22%00.9402
4Logan O'Connor1534387234014266850.00%1535123.425611800005037.78%54.1000
5Greg McKegg1032150711361591182618.05%54156515.2029113500006053.22%00.9100

Checkers

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Alex Lyon48241860.9063.122887201501599951500.0000
2Jon Gillies36151740.8863.752177001361197670310.7789
3Cameron Johnson1712410.9182.7610230147573355200.0000
4Malcolm Subban22000.8983.001200065931100.0000

Checkers

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
2021826215012205522712814132800100312135177413070112024013610413255289714490160189173187205405916548032182834170410451967136.22%2124678.30%14526111047.39%691147246.94%646143045.17%1711112220076171213607
2021821720144071536-465411330133043262-219410390011028274-24616711312020409183982501712404111768713143964922693.98%1074557.94%135075646.30%35984442.54%562121846.14%248019961489501974449
20228237320561131127932412210034111701195141152202200141160-19933115468571111211776628719941027831272736103733617211713721.64%1682883.33%8757150250.40%735149949.03%559113649.21%1798112418116681343675
202321107004007762151071002004123181136002003639-3247713120800272525076828224024606932506847037718.92%25676.00%117439044.62%18336650.00%14827154.61%475305439169346174
Total Regular Season26711012607167110111148-137133625204104156653927134487403630445609-16426510111705271612113934029223265181276202919711241737928343547388563012419.68%51212575.59%241807375848.08%1968418147.07%1915405547.23%646545485748195738781907
Playoff
2021404000002457-33202000001435-21202000001022-1202439630001428118043215412040805113323.08%10640.00%1357149.30%154235.71%5311546.09%966679296429
Total Playoff404000002457-33202000001435-21202000001022-1202439630001428118043215412040805113323.08%10640.00%1357149.30%154235.71%5311546.09%966679296429

Checkers

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Checkers

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA